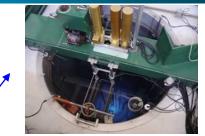
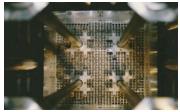
Multipurpose Research Reactor (RMB)

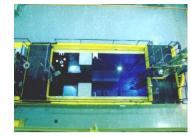

Project Status

José Augusto Perrotta CNEN - Brazil

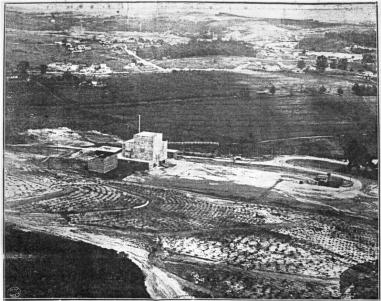
November 2011

Name	Utilization	Power	Location	Startup	Туре
IEA-R1	Research – Radioisotope Production	5 MW (2 MW)	IPEN/CNEN-SP São Paulo	1957	MTR Pool Type Reactor
IPR-R1	Research – Training	100 kW	CDTN/CNEN-MG Belo Horizonte	1960	TRIGA MARK-I
ARGONAUTA	Research – Training	500 W	IEN/CNEN-RJ Rio de Janeiro	1965	Argonaut
IPEN/MB-01	Critical Facility – PWR Core Analysis	100 W	IPEN/CNEN-SP São Paulo	1988	Pin Type Open Core




IPR-R1 Research Reactor

ARGONAUTA Research Reactor


IPEN/MB-01 Research Reactor

IEA-R1 Research Reactor

IEA-R1	IPR-R1	ARGONAUTA	IPEN/MB-01
 Specific radioisotope production for medical, industry, agriculture and engineering applications Neutron activation analysis Neutron radiography 	Specific radioisotope production for medical, industry, agriculture and engineering applications •Neutron activation analysis.	 Teaching and training in reactor physics Neutron activation analysis 	 Validation of reactor physics methodology and nuclear data associated for PWR core analysis Teaching and training in reactor physics
Neutron Beam Utilization	•Teaching and training in reactor physics.		
 Silicon Doping 	•Training of the		
•Fuel irradiation and NDT analysis inside the pool	Brazilian nuclear power reactor operators.		
 Teaching and training in reactor physics 			
•Neutron Flux < 5x10 ¹³ n/cm ² .s (thermal)			

IPEN: IEA-R1 Reactor (1958)

Future Perspectives for RR Utilization

Brazilian Nuclear Program Review

- Electricity produced by nuclear power plants
 - Brazil will continue to use nuclear energy in its electrical power matrix.
- Nuclear Fuel
 - Brazil has a significant uranium ore reserve and domains the fuel cycle technology, including U enrichment.
 - Increase of industrial activities for supplying the nuclear power plants needs.

Nuclear Techniques Utilization

- Increase of nuclear techniques applications and radioisotope utilization in the benefit of the society.
- Increase of autonomous technology development

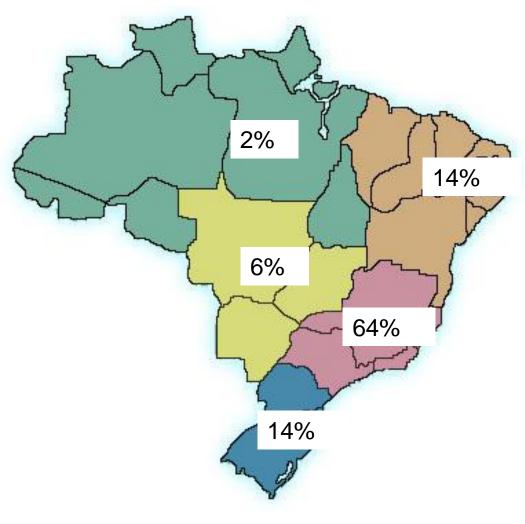
Electricity Production Capacity

2008

2030 Prevision

Source	Source N. kw	kW	%	o Source	Installed capacity (MW)	
Uni	Units	R V V	70		2020	2030
Hydro	765	77.508.375	71,46	Hydro	116.100	156.300
Gas	119	11.779.831	10,86	Big Units	116.100	156.300
Oil	759	4.749.025	4,38	Thermal	26.897	39.897
Biomass	319	4.772.052	4,40	Natural Gas	14.035	21.035
Nuclear	2	2.007.000	1,85	Nuclear (2+1+4)	4.347	7.347
Mineral Coal 8 1.455.1				Mineral Coal	3.015	6.015
	1.455.104	1,34	Other	5.500	5.500	
Wind	21	338.350	0,31	Alternatives	8.783	20.322
Solar	1	20	0,00	Small Hydro	3.330	7.769
30181		20	0,00	Wind	2.282	4.682
Import -	-	5.850.000	5,39	Sugar Cane Biomass	2.971	6.571
			Urban Residues	200	1.300	
Available	1.994	108.459.757	100,00	Import	8.400	8.400
Capacity				TOTAL	160.180	224.919

Nuclear Medicine


⁹⁹Mo/^{99m}Tc Generator

- More than 330 generators per week
- ≻250,500,750,1000,1250,1500 and 2000 mCi

Produced by IPEN/CNEN-SP, with imported Mo99

Nuclear Medicine

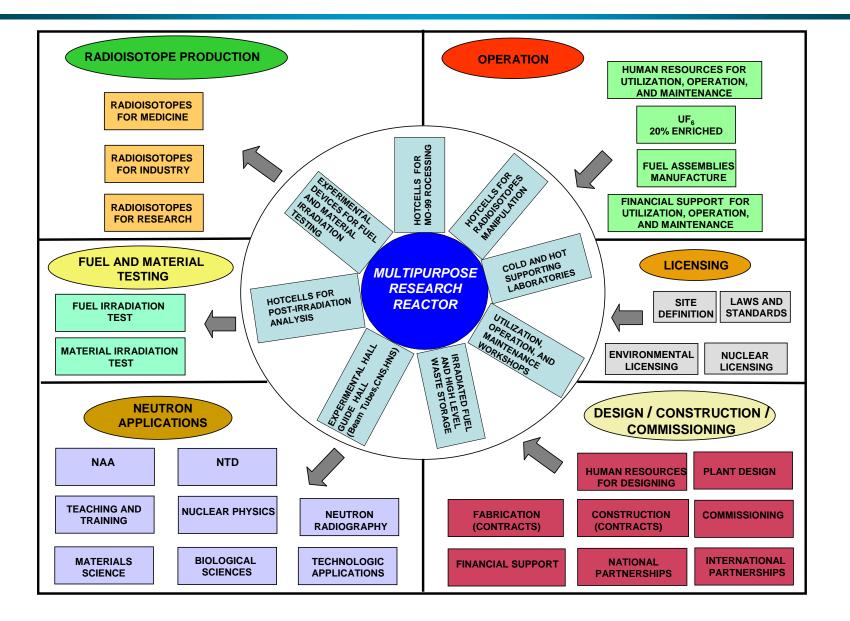
Regional Distribution of Radiopharmacals produced by IPEN

More than 300 clinics

More than 1,5 million procedures per year

Future Perspectives for RR Utilization

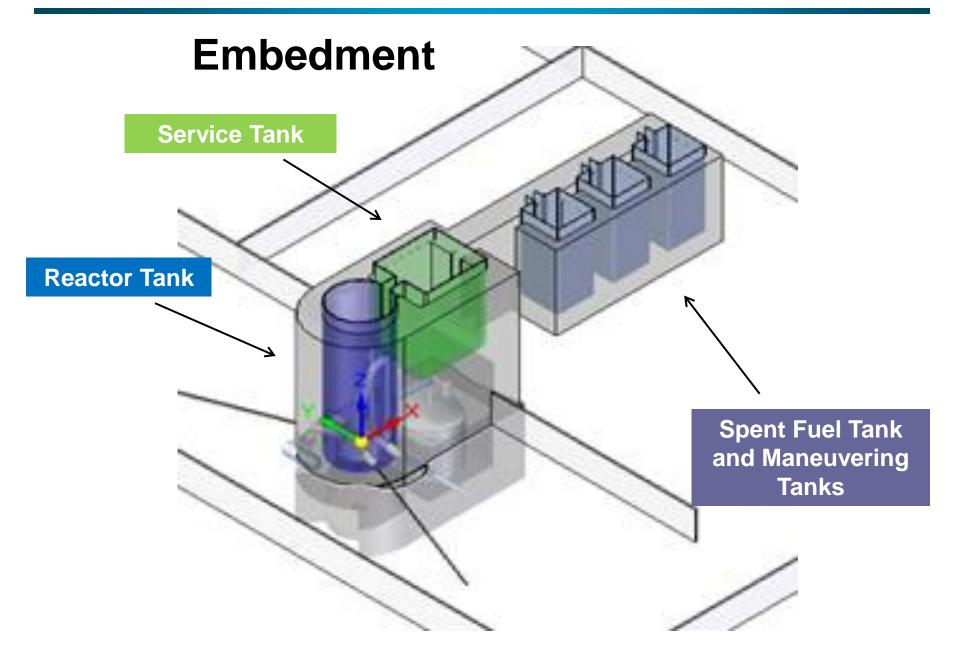
WHY a New Multipurpose Research Reactor?

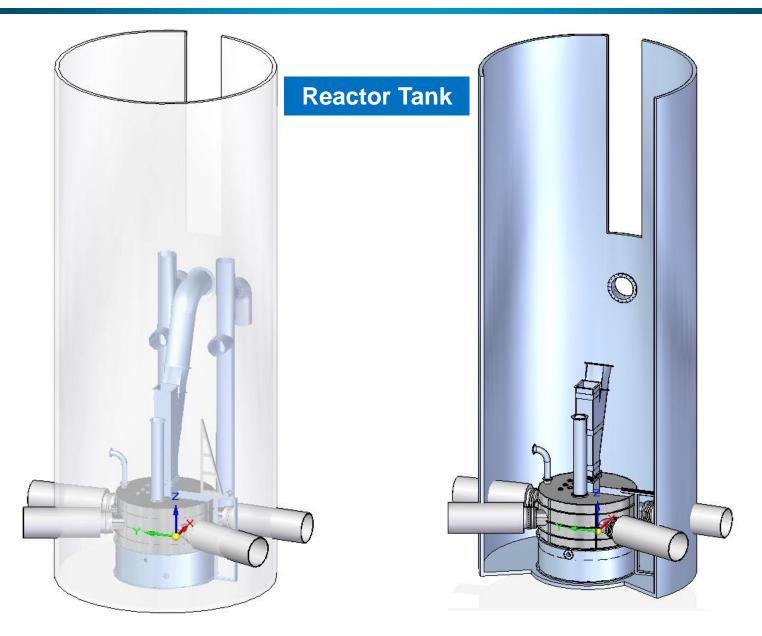

- To support the Brazilian nuclear program proposal of increasing activities in the nuclear sector for the next decades (structuring project);
- To support the nuclear medicine in Brazil through the radioisotope production for radiopharmaceuticals application that today is strongly dependent on international suppliers;
- To support the industrial application of power reactors and nuclear fuel technology that requires fuel and material testing under irradiation for an autonomous development;
- To improve fundamental and technological research through neutron beam utilization which is limited by the existing infrastructure of the nuclear research institutes.

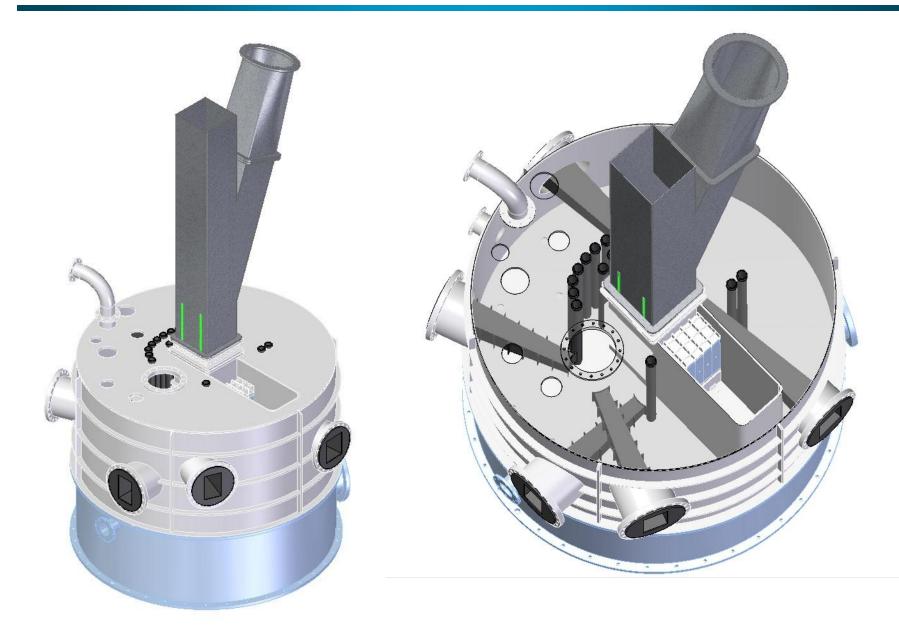
Future Perspectives for RR Utilization

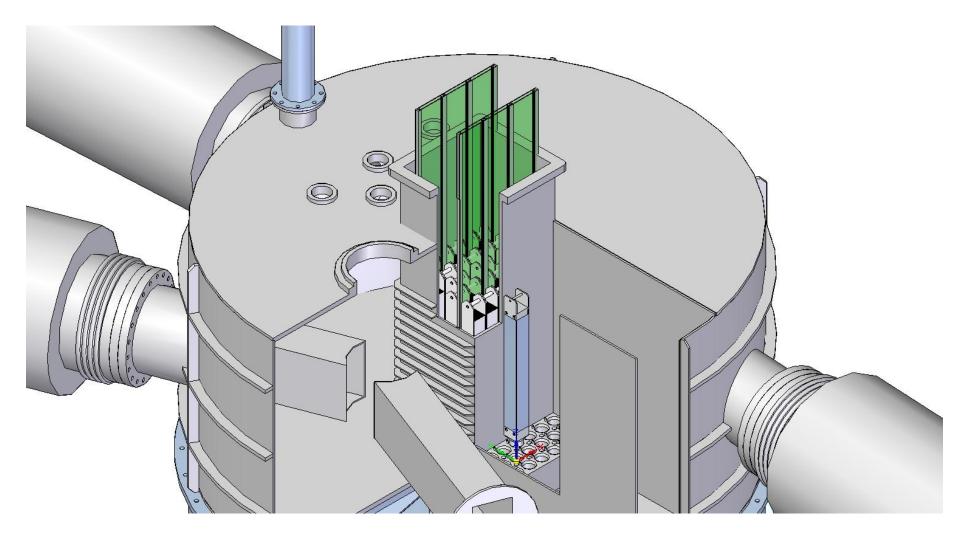
Decision on the New Multipurpose Research Reactor!

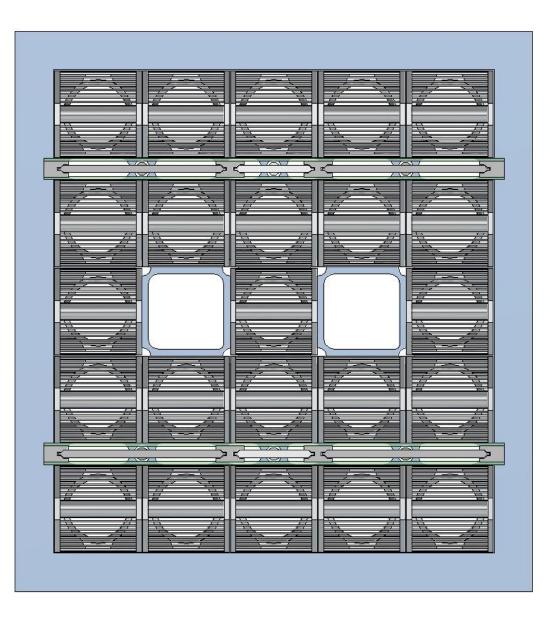
- ✓ The Science Technology and Innovation Ministry has decided to support the new research reactor construction in accordance to the Brazilian Nuclear Program
- ✓ The Brazilian Nuclear Energy Commission (CNEN) is in charge of implementing the new research reactor.
- ✓ The State of São Paulo is giving support to the project.
- This new research reactor shall have neutron fluxes compatible to the multipurpose uses and application needs.

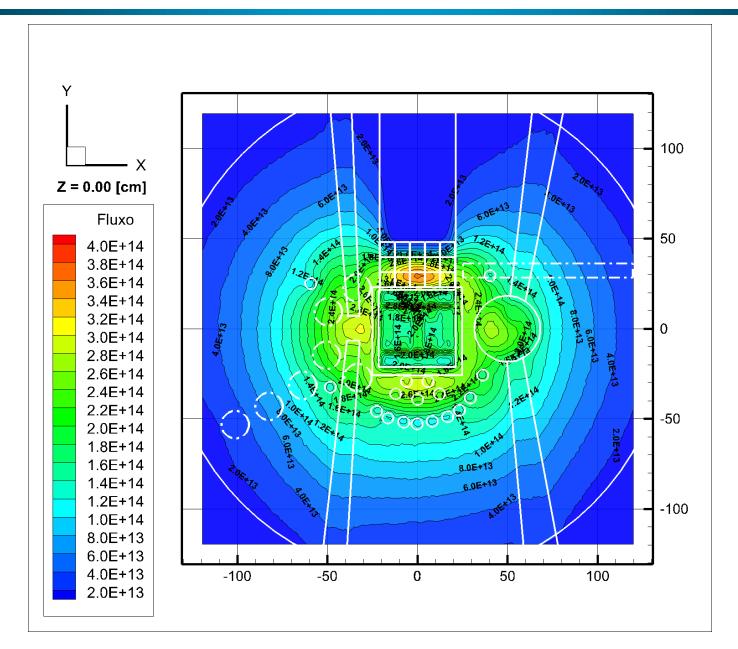

RMB Scope

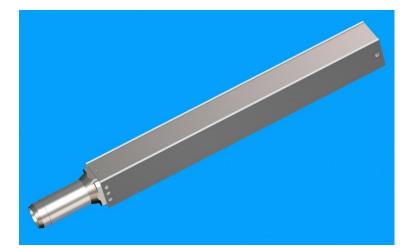


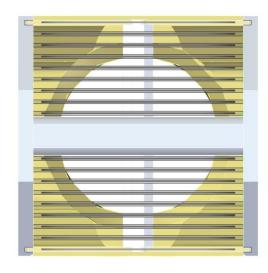

RMB Buildings

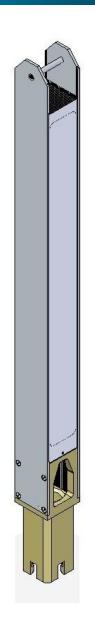



- Open pool multipurpose research reactor with a primary cooling system through the core – OPAL RR as a reference model for conceptual design.
- The reactor core will be compact, using MTR fuel assembly type, with planar plates, U₃Si₂-Al dispersion fuel with maximum 4,8 gU/cm³ density and 20 % U-235 enrichment.
- The reactor core will be cooled and moderated by light water, using heavy water as reflector and light water and/or beryllium in one side of the core.
- > Neutron flux (thermal and fast) higher than $2x10^{14}$ n/cm².s.
- Maximum Thermal Power 30 MW








Fuel Assembly Manufacture

Natural UF₆ – USEXA / CTMSP 20% Enrichment UF₆ – LEI / CTMSP Manufacturing and Assembling – IPEN

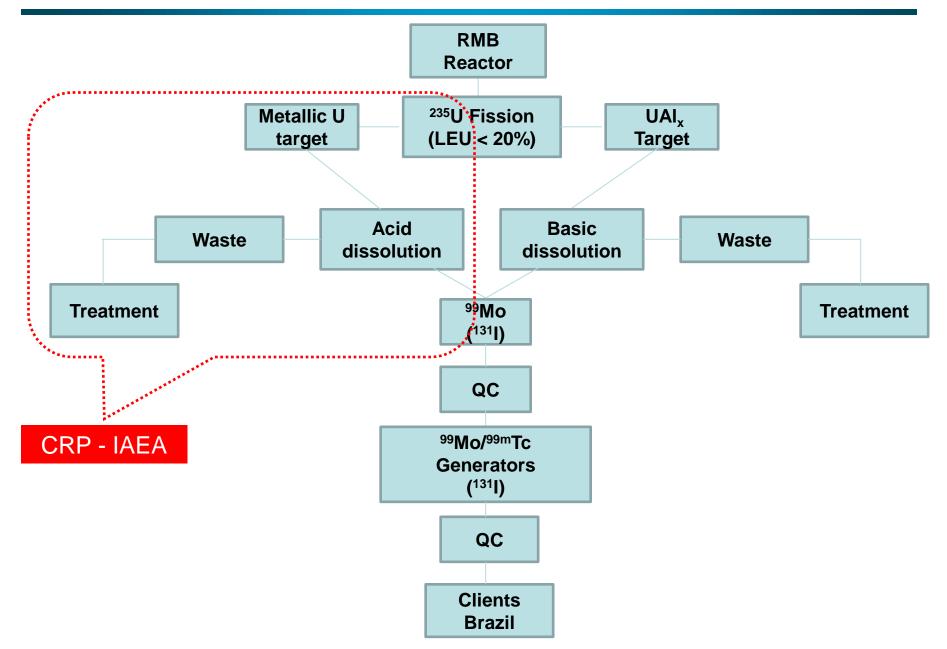
IEA-R1

RMB

Radioisotope Production

Radioisotope for Injectable Radiopharmaceuticals

- ✤ ⁹⁹Mo , ¹³¹I, ⁵¹Cr, ¹⁵³Sm, ¹⁷⁷Lu, ¹⁶⁶Ho, ⁹⁰Y, ¹⁸⁸W, ³²P
 - ✓ ⁹⁹Mo obtained by LEU target irradiation and processing
 - ✓ 1000 Ci/week (Today 350 Ci/week imported by IPEN and 450 Ci/week before the international crisis)
- Radioisotope for Brachtherapy
 - ¹²⁵∣, ¹⁹²∣r
- Radioisotope for Industry *¹⁹²Ir. ⁶⁰Co


> Tracers

✤²⁰³Hg , ¹³¹I, ⁸²Br

Infrastructure

- Processing hot cells for irradiated U targets (LEU) to produce ⁹⁹Mo and ¹³¹I;
- Hot cells for handling and transport preparation of produced radioisotopes;
- Special hot cells for radioactive sources processing and sealing;
- Hot cell and special devices for ¹²⁵I production;
- Shielded casks for radioisotope transportation;
- Irradiation devices for in core and in reflector radioisotope production;

Production methods of ⁹⁹Mo (Development)

Nuclear Fuel and Materials Irradiation Test

Materials	Test Objective
Nuclear Fuels	Fuel Performance Characterization and Specification Optimization
Structural Materials	Life Extension of Nuclear Power Plants Characterization of Materials and Performance under Irradiation
All	Safety Analysis

Irradiation Systems

- Pressurized irradiation loops for fuel testing with pressure and cooling temperature control
- Irradiation capsules for fuel specimens testing
- Horizontal displacement devices for simulating power ramps and loading following
- Irradiation capsules with temperature control for structural materials testing
- Irradiation experiments control room and data collection systems
- Experimental devices for underwater nondestructive analysis (visual inspection, gamma scanning, sipping, etc)

Post-irradiation Examination

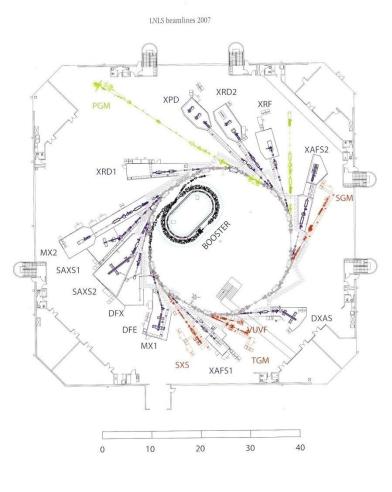
One hot cell laboratory for irradiated fuel and one hot cell laboratory for irradiated materials examination

> The hot cells laboratory shall allow:

- Nondestructive physical characterization analysis of irradiated specimens
- Puncturing and fission gas collection
- Sample preparation for metallographic analysis
- Optical microscopy
- Physical and mechanical properties characterization equipment

Fuel Post Irradiation Laboratory

Materials Post Irradiation Laboratory


Cel 1	Reception, Visual Inspection, Dimensional Analysis, Hardness
Cel 2	Sample Preparation
Cel 3	Storage
Cel 4	Uniaxial Mechanical Tests
Cel 5	Uniaxial Creep Tests, Relaxation Tests
Cel 6	Burst Tests, Biaxial Creep Tests
Cel 7	Fracture Mechanics Tests
Cel 8	Fatigue Tests
Cel 9	Charpy Tests.
Cel 10	Microstructural Analysis

Neutron Beam Utilization

LNLS- Laboratório Nacional de Luz Sinchrotron

RMB a National Laboratory for Neutron Beam Utilization as a Complement to the LNLS

Neutron Beam Utilization

- To allow the possibility of at least three beam holes (today proposed 5)
- To project two beam holes with neutron guides: one for thermal and one for cold neutrons. Each beam hole shall have capacity for at least 2 neutron guides (today with 3 guides)
- The technical characteristics of each beam hole (dimensions and position) will be established during the conceptual design of the reactor.
- > Each beam hole shall have a flux higher than:
 - > 1×10^{9} n/cm².s outside the reactor shielding; or
 - > 1×10^{14} n/cm².s at the point of tangency near the core.

Neutron Beam Utilization

Initial Equipment Proposal

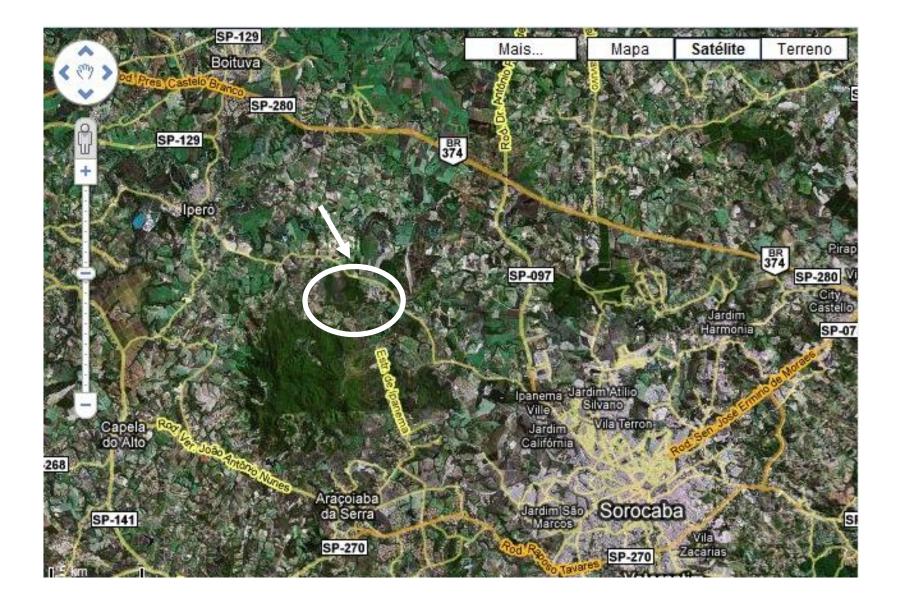
Thermal Neutrons Beam

Guide Hall	Experimental Hall			
High Resolution Diffractometer	Three Axis Spectrometer			
High Intensity Diffractometer	Neutron radiography			
Laue Diffractometer				
Residual Stress Diffractometer				
Cold Neutrons Beam				
Small Angle Neutron Scattering				
Prompt Gamma Analysis				

- Neutron Activation Analysis at irradiation positions with thermal neutron flux in the range of 10¹¹ to 10¹³ n/cm².s.
- One irradiation position with cadmium filter for epithermal neutrons activation.
- Pneumatic stations with transit time of 10 seconds, and one very fast station with transit time less than 10 seconds for analysis of radioisotopes with very high decay constant.
- Pneumatic stations for transportation of samples (long irradiation) from core to the radiochemical laboratory.
- Fission delayed neutron measurement system for samples containing U and Th.

Project Management

- Project managed by the Research and Development Directorate of the Brazilian Nuclear Energy Commission (DPD-CNEN)
- Scope and preliminary design, licensing process managing and commissioning verification performed by the Research Institutes of CNEN: IPEN, CDTN, IEN, CRCN
- Basic and detailed design, manufacturing, construction, assembling and their management will be carried out by national and international companies.
- Project technically supported by Brazilian Academy
- Project Cost estimation of US\$ 500 million (R\$ 850 million)
- Project time span of at least 6 years after the first contract signature and availability of funds. (2012)


Project Status

- CNEN Institutes technicians are developing the scope and preliminary design of the reactor systems and main facilities.
- R\$ 30 million allocated by the MCTI (FNDCT- FINEP) to contract the conceptual and basic engineering design of systems, buildings and infrastructure of the RMB (except basic engineering design of pure nuclear systems and components). Work contract under development.
- Brazil-Argentina Agreement (CNEN-CNEA) signed for common basic engineering design of the RMB and RA-10 (pure nuclear part). OPAL reactor adopted as a reference model, and Argentine company INVAP will be contracted by both parties for this project step.

Project Status

- Environmental licensing process started. Term of Reference for EIA/RIMA approved by IBAMA (Ministry of Environment). Work contract under development.
- A sustainability study (costs and benefits) related to the development and construction of a new research reactor in Brazil has been accomplished by CNEN, with a favorable opinion by the Ministry of Planning.
- The government included the RMB project in the four year governmental budget planning (2012-2015) ensuring the continuity of the project for these years. (up to 50% of the total project) (under Congress analysis for approval)

Thank you!

